Substrate-Membrane Interactions: Mechanisms for Imposing Patterns on a Fluid Bilayer Membrane
نویسندگان
چکیده
A variety of new techniques are emerging that require the use of a patterned substrate to impose micropartitions on a supported fluid bilayermembrane. The barrier-forming characteristics of aluminum oxide, indium-tin oxide (ITO), chrome, and gold patterns on silica substrates have been examined. All four materials form effective barriers to lateral diffusion within the supported membrane; however, two distinctly different mechanisms were observed. Aluminum oxide inhibits vesicle fusion, thus restricting membrane formation to the exposed silica surface. In contrast, vesicles will fuse with ITO, chrome, and, to some extent, gold; however, the resultingmembrane is effectively immobile over the time scale of several hours. These materials partition the supported membrane by selectively immobilizing membrane that adsorbs to their surface. The twomechanisms ofmembrane partitioning described here provide additional flexibility in the design and application of micropatterned membranes.
منابع مشابه
Evidences for a new cation channel in the brain mitochondrial inner membrane
Introduction: Previous studies and our works have indicated several cation channels in the rat brain mitochondrial inner membrane. In this work, we report the single-channel characterization of a cation channel from the rat brain mitochondrial inner membrane incorporated into a planar lipid bilayer. Methods: After removing and homogenizing the adult rat brain, its supernatant was centrifuged...
متن کاملPolyethylene Glycol Repairs Damaged Membrane; Biophysical Application of Artificial Planar Bilayer to Mimic Biological Membrane
Polyethylene glycol (PEG) is a hydrophilic polymer, known to be capable to fuse numerous single cells in vitro, to join the membranes of adjacent neurons and giant invertebrate axons, and to seal damaged neural membranes. The molecular mechanism of the action of PEG is still unknown. It is believed that PEG dehydrates membranes and enables their structural components to resolve and rearrange in...
متن کاملCharacterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane
Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...
متن کاملMembrane curvature based lipid sorting using a nanoparticle patterned substrate.
Cellular membranes contain a variety of shapes that likely act as motifs for sorting lipids and proteins. To understand the sorting that takes place within cells, a continuous, fluid bilayer with regions of membrane curvature was designed and characterized using confocal fluorescence and total internal reflection fluorescence microscopy techniques. A supported lipid bilayer was formed over fluo...
متن کاملEffect of Flexural and Membrane Stiffness on the Analysis of Floating Roofs
With the aim of extending the use of integrated variational principles on fluid and deckplate to the large deflection analysis of floating roofs, this paper investigates the significance of theflexural and membrane components in the formulations of the deck plate. Applying integratedvariational principles on deck plate and fluid facilitate the treatment of the compatibility ofdeformation betwee...
متن کامل